Issue 6, 2024

Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3−δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells

Abstract

Reversible solid oxide cells (RSOCs) hold enormous potential for efficient direct CO2 reduction or CO oxidation in terms of exceptional faradic efficiency and high reaction kinetics. The identification of an active fuel electrode is highly desirable for enhancing the performance of RSOCs. This study explores the use of a alkaline metal dopant (Na) to modify the perovskite oxide of Na2x(La0.6−xSr0.4−x)FeO3−δ (2x = 0, 0.10, 0.20) materials with powerful CO2 chemical adsorption capacity, high oxygen ion conductivity, and low average valence of Fe sites for CO2/CO redox reactions. The experimental results indicate that the cells with the NaLSF0.10 fuel electrode achieve a current density of 1.707 A cm−2 at 1.5 V/800 °C and excellent stability over 120 hours at 750 °C for pure CO2 electrolysis, approximately 33.4% improvement over the pristine sample. When operated under a mixed CO–CO2 atmosphere under RSOC mode, the cell outputs the performance of 1.589 A cm−2 at 1.5 V and 329 mW cm−2 at 800 °C, and demonstrates relatively durable operation over 25 cycles. The addition of low valence sodium ions with high basicity and low electronegativity reduces the oxygen vacancy formation energy, increases the concentration of oxygen vacancies and modifies the electronic structure of LSF, thus enhancing CO2 adsorption, dissociation processes and charge transfer steps as corroborated by the detailed experimental analysis. Combined with the acceptable anti-carbon deposition capability, we prove here a feasible strategy and provide new insights into designing novel electrodes for SOEC/RSOCs to effectively convert CO2 with potential for renewable energy storage.

Graphical abstract: Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3−δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2023
Accepted
04 Jan 2024
First published
04 Jan 2024

Green Chem., 2024,26, 3202-3210

Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3−δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells

W. Lin, Y. Li, M. Singh, H. Zhao, R. Yang, P. Su and L. Fan, Green Chem., 2024, 26, 3202 DOI: 10.1039/D3GC04451C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements