Efficient electrochemical CO2 reduction in acidic electrolytes using armor-like iron nanoparticles/porous nitrogen-doped carbon†
Abstract
Electrochemical reduction of CO2 presents a persistent challenge in achieving high selectivity and stability, particularly in acidic electrolytes. Here, we successfully engineer an efficient armor-like catalyst, comprising Fe nanoparticles within nitrogen-doped carbon (Fe@NC) based on a solvent-free mechanochemistry method followed by pyrolysis. Porous nitrogen-doped carbon shells served as an effective protective layer for the Fe nanoparticles, facilitating the conversion of CO2 to CO with an impressive FECO of 99.0% in acidic electrolytes. As a result, the armored Fe@NC sustained its catalytic activity throughout 14 hours electrolysis period.