In situ hierarchical self-assembly of NiFeHCF nanoparticles on nickel foam: highly active and ultra-stable bifunctional electrocatalysts for water splitting and their environmental assessment towards green energy†
Abstract
A 3D hierarchical nickel–iron hexacyanoferrate electrocatalyst was successfully grown on nickel foam using an energy-efficient in situ self-assembly method. The as-prepared NiFeHCF@NF electrode has good morphology and intimate contact with the NF compared to electrodes from the co-precipitation method. The well-designed NiFeHCF@NF nanostructure delivers prominent performances that require overpotentials as low as 210 and 125 mV@10 mA cm−2 for the OER and HER in 1 M KOH, respectively. Tafel slope and electrochemical impedance studies further revealed favourable kinetics during electrolysis. Hence, an NiFeHCF@NF||NiFeHCF@NF water electrolyser only required 1.56 V@10 mA cm−2 with an ∼2.5% potential loss. Furthermore, the synergistic effect of iron and nickel with ferrocyanide improved the structural stability and promoted the generation of active phases during the OER/HER, resulting in outstanding durability for 150 h. Moreover, the novel all-in-one strategy can be used to explore other bifunctional and cost-efficient electrocatalysts for various applications. The solar-based water electrolysis and environmental assessment confirmed the practical use of NiFeHCF@NF for eco-friendly industrial hydrogen production.