Synthesis of highly dispersed carbon-encapsulated Ru–FeNi nanocatalysts by a lignin–metal supramolecular framework strategy for durable water-splitting electrocatalysis†
Abstract
The utilization of plant polyphenols as catalyst carriers holds promise for environmentally friendly catalysis. However, challenges such as the inhomogeneous distribution of organic ligands often hinder their effectiveness. In this study, lignin–metal supramolecular framework were formed through ionic coordination self-assembly, achieved by oxidative ammonolysis modified lignin. The specific spatial domain-limiting effect of lignin–metal supramolecular framework ensures the dispersion and stability of catalyst active sites. Carbon-coated trimetallic catalysts (Ru–FeNi@OALC) derived from lignin–metal supramolecules exhibit promising performance, with low overpotentials for the oxygen evolution reaction (OER, η10 = 290 mV) and the hydrogen evolution reaction (HER, η10 = 52 mV), surpassing commercial noble metal catalysts. Additionally, these catalysts demonstrate long-lasting water-splitting performance, highlighting their potential for sustainable catalytic reactions. Molecular simulations and DFT theoretical calculations elucidate the feasibility of lignin oxidative ammonolysis modification and reveal the coordination mechanism. Furthermore, the abundant defects and disorder in the coordination polymer-derived carbon materials optimize electron transfer processes and accelerate reaction kinetics. This construction strategy towards designable polyphenol–metal supramolecular framework presents a promising avenue for the green synthesis of a variety of metal/carbon composite catalysts, contributing to sustainable catalysis and environmental protection.