Issue 16, 2024

Molecular origins of enhanced bioproduct properties by pretreatment of agricultural residues with deep eutectic solvents

Abstract

Pretreatment facilitates cost-effective operations on lignocellulosic biomass ranging from densification to deconstruction and bioproduct development. However, determining molecular-level mechanisms behind pretreatment and their effects has remained elusive. Here, we combine computational simulation and experiment to investigate the effects on wheat straw agricultural residue densification of an emerging pretreatment solvent, namely, a deep eutectic solvent (DES) consisting of choline chloride (ChCl) and oxalic acid (OA). Ab initio molecular dynamics indicates that dissociation of lignin from cellulose in lignin–carbohydrate complexes, which does not occur to a significant extent in aqueous solution, is favorable in the DES and occurs via cleavage of the guaiacyl : xylose ether bond linkage by OA. The ensuing hemicellulose removal exposes lignin to the DES which, molecular dynamics simulation indicates, leads to lignin expansion. The resulting changes in wheat straw fiber structure, lignin distribution, and functional group modifications upon DES treatment by scanning electron and fluorescence microscopy along with Fourier-transform infrared spectroscopy. The molecular expansion of lignin enhances inter-particle binding in wheat straw, leading to denser structures under pelletization. The resulting high mechanical stability and combustion properties make the wheat straw a suitable precursor of high-quality densified solids (e.g., solid biofuel). Overall, we shed light on the molecular-level mechanisms involved in DES pretreatment for biomass densification, demonstrated here in the development of a solid biofuel. The approach here illuminates the rational design from first chemical principles of methods to convert lignocellulosic resources into advanced materials.

Graphical abstract: Molecular origins of enhanced bioproduct properties by pretreatment of agricultural residues with deep eutectic solvents

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2024
Accepted
28 Jun 2024
First published
11 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2024,26, 9142-9155

Molecular origins of enhanced bioproduct properties by pretreatment of agricultural residues with deep eutectic solvents

Y. Yu, Z. Wan, J. M. Parks, S. Sokhansanj, O. J. Rojas and J. C. Smith, Green Chem., 2024, 26, 9142 DOI: 10.1039/D4GC01877J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements