Lignin molecular sieving engineering enables high-plateau-capacity hard carbon anodes for sodium-ion batteries†
Abstract
Derived from lignocellulosic biomass, sustainable hard carbon has emerged as a promising low-cost anode material for sodium-ion batteries (SIBs). However, the intricate formation process of the hard carbon microstructure remains unclear. This study investigates the structural differences and pyrolysis behaviors of pine lignin and its graded variants obtained through a lignin molecular sieving engineering strategy. Moreover, it delves into the relationship between the microstructure of lignin-derived hard carbon and its sodium-ion storage characteristics. Pristine pine lignin, along with ethanol-isolated lignin, acetone-isolated lignin, and residual lignin, serves as a precursor for synthesizing hard carbon materials. Quantitative analysis via31P NMR spectroscopy reveals the highest content of polar functional groups in ethanol-isolated lignin. Interestingly, hard carbon derived from ethanol-isolated lignin exhibits the smallest closed pore volume, leading to the lowest plateau capacity of sodium-ion storage. Conversely, hard carbon derived from acetone-dissolved lignin displays the highest plateau capacity owing to its largest closed pore volume formed in the carbonization process. The origin of open and closed pore structures of hard carbons is thoroughly analyzed.