A green and sustainable multi-enzyme cascade for the biosynthesis of 1,3-propanediamine from crude glycerol in vitro†
Abstract
1,3-Propanediamine is a widely used compound of the α,ω-diamines class. However, conventional synthetic methods for producing 1,3-propanediamine often contradict the principles of green chemistry due to their high energy consumption, numerous by-products, and significant waste pollution. In this study, we designed a new pathway to produce 1,3-propanediamine through a retrosynthetic-designed multi-enzyme cascade from glycerol in vitro. After completing the substrate preference modification of the rate-limiting enzyme glycerol dehydratase (KpGDHT) and optimizing the reaction conditions, the conversion efficiency using pure glycerol and crude glycerol as substrates reached 77% and 79%, respectively. Compared with the conventional methods, this multi-enzyme cascade is a simpler process, less energy-consuming and cleaner in terms of substrate usage. Given its robustness and environmental benefits, this proposed cascade reaction pathway has great potential to produce 1,3-propanediamine on an industrial scale.