Issue 3, 2024

A chemically functionalized glass support for gold and silver metallic nanoparticle analysis with LIBS

Abstract

This work has focused on the development of a new analytical alternative based on the laser-induced breakdown spectroscopy (LIBS) technique for the fast, reliable, and economical determination of the gold and silver nanoparticle content in a low linear concentration range between 2.9 and 0.058 μg mL−1 and 2.9–0.116 μg mL−1, respectively, without requiring complicated sample pretreatment procedures or advanced separation techniques. Metallic nanoparticles are currently essential materials for the development of new technologies in different scientific and technical areas. However, numerous studies have pointed out these nanomaterials' toxic and polluting potential and the various health implications for humans, animals, and the ecosystem. The current reality reflects the lack of analytical techniques with low economic, environmental, and health impacts and the capacity to quantify the total metallic nanoparticle content. For this purpose, a novel and simple method for the selective capture of gold and silver nanoparticles, consisting of a chemically functionalized glass surface, has been custom-developed for subsequent analysis with LIBS. The results show that the proposed method, employing a functionalized sample glass support, presents a suitable analytical performance characterized by increased sensitivity, specifically 4.7% and 329.2% for Au-NPs and Ag-NPs, and proportionally decreased error in the slope and intercept of the calibration curves, 68% for Au-NPs and 87% for Ag-NPs, respectively.

Graphical abstract: A chemically functionalized glass support for gold and silver metallic nanoparticle analysis with LIBS

Article information

Article type
Paper
Submitted
30 Nov 2023
Accepted
06 Feb 2024
First published
08 Feb 2024
This article is Open Access
Creative Commons BY-NC license

J. Anal. At. Spectrom., 2024,39, 962-973

A chemically functionalized glass support for gold and silver metallic nanoparticle analysis with LIBS

J. Cárdenas-Escudero, V. Gardette, A. Villalonga, A. Sánchez, R. Villalonga, V. Motto-Ros, D. Galán-Madruga and J. O. Cáceres, J. Anal. At. Spectrom., 2024, 39, 962 DOI: 10.1039/D3JA00425B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements