A chemically functionalized glass support for gold and silver metallic nanoparticle analysis with LIBS
Abstract
This work has focused on the development of a new analytical alternative based on the laser-induced breakdown spectroscopy (LIBS) technique for the fast, reliable, and economical determination of the gold and silver nanoparticle content in a low linear concentration range between 2.9 and 0.058 μg mL−1 and 2.9–0.116 μg mL−1, respectively, without requiring complicated sample pretreatment procedures or advanced separation techniques. Metallic nanoparticles are currently essential materials for the development of new technologies in different scientific and technical areas. However, numerous studies have pointed out these nanomaterials' toxic and polluting potential and the various health implications for humans, animals, and the ecosystem. The current reality reflects the lack of analytical techniques with low economic, environmental, and health impacts and the capacity to quantify the total metallic nanoparticle content. For this purpose, a novel and simple method for the selective capture of gold and silver nanoparticles, consisting of a chemically functionalized glass surface, has been custom-developed for subsequent analysis with LIBS. The results show that the proposed method, employing a functionalized sample glass support, presents a suitable analytical performance characterized by increased sensitivity, specifically 4.7% and 329.2% for Au-NPs and Ag-NPs, and proportionally decreased error in the slope and intercept of the calibration curves, 68% for Au-NPs and 87% for Ag-NPs, respectively.