Issue 12, 2024

High-precision MC-ICP-MS measurements of Cd isotopes using a novel double spike method without Sn isobaric interference

Abstract

Previous studies have reported that even low concentrations of Sn can lead to biased Cd isotopic measurements using MC-ICP-MS. In this paper, we propose a novel method of Cd isotopic analysis involving use of a 106Cd–111Cd double spike. To eliminate isobaric interference from 114Sn, we use 113Cd together with 106Cd, 110Cd, and 111Cd to obtain δ113/110Cd, and then calculate δ114/110Cd as 1.33 × δ113/110Cd. We find that when Sn/Cd is ≤2.5 in sample solutions, δ114/110Cd values are not affected by Sn, which behaves as a matrix element rather than causing isobaric interference. Cd isotopic measurements are not sensitive to the molarities of diluted HNO3 or the Cd concentration. Additionally, when Mo/Cd, Ni/Cd, and Se/Cd are ≤1 in sample solutions, Cd isotopic measurements are not significantly affected. Instead, when Zn/Cd is >0.1, In/Cd > 0.05, and Pd/Cd > 5 × 10−3, the measured δ114/110Cd values deviate significantly from zero. However, Zn and In can be eliminated completely, and Pd was not detected in any Cd eluents. The δ114/110Cd values of three standard solutions (Spex-CUGB, BAM I012, and Münster) and four geochemical reference materials (SGR-1b, BCR-2, GSD-7a, and NIST 2711a) were measured and found to be in close agreement with published results (with 2SD and ranges for all data of less than 0.090 and 0.120, respectively). This indicates that the data obtained by our double spike method are precise and reliable. Additionally, our new technique can help to simplify separation procedures, thus saving time and reducing the quantities of acid required.

Graphical abstract: High-precision MC-ICP-MS measurements of Cd isotopes using a novel double spike method without Sn isobaric interference

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2024
Accepted
07 Nov 2024
First published
08 Nov 2024

J. Anal. At. Spectrom., 2024,39, 3106-3115

High-precision MC-ICP-MS measurements of Cd isotopes using a novel double spike method without Sn isobaric interference

J. Li, S. Tang, X. Zhu, J. Ma, Z. Zhu and B. Yan, J. Anal. At. Spectrom., 2024, 39, 3106 DOI: 10.1039/D4JA00357H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements