Issue 8, 2024

A microfluidic model to study the effects of arrhythmic flows on endothelial cells

Abstract

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and an important contributor to morbidity and mortality. Endothelial dysfunction has been postulated to be an important contributing factor in cardiovascular events in patients with AF. However, how vascular endothelial cells respond to arrhythmic flow is not fully understood, mainly due to the limitation of current in vitro systems to mimic arrhythmic flow conditions. To address this limitation, we developed a microfluidic system to study the effect of arrhythmic flow on the mechanobiology of human aortic endothelial cells (HAECs). The system utilises a computer-controlled piezoelectric pump for generating arrhythmic flow with a unique ability to control the variability in both the frequency and amplitude of pulse waves. The flow rate is modulated to reflect physiological or pathophysiological shear stress levels on endothelial cells. This enabled us to systematically dissect the importance of variability in the frequency and amplitude of pulses and shear stress level on endothelial cell mechanobiology. Our results indicated that arrhythmic flow at physiological shear stress level promotes endothelial cell spreading and reduces the plasma membrane-to-cytoplasmic distribution of β-catenin. In contrast, arrhythmic flow at low and atherogenic shear stress levels does not promote endothelial cell spreading or redistribution of β-catenin. Interestingly, under both shear stress levels, arrhythmic flow induces inflammation by promoting monocyte adhesion via an increase in ICAM-1 expression. Collectively, our microfluidic system provides opportunities to study the effect of arrhythmic flows on vascular endothelial mechanobiology in a systematic and reproducible manner.

Graphical abstract: A microfluidic model to study the effects of arrhythmic flows on endothelial cells

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2023
Accepted
20 Mar 2024
First published
21 Mar 2024

Lab Chip, 2024,24, 2347-2357

A microfluidic model to study the effects of arrhythmic flows on endothelial cells

A. Lai, A. Hawke, M. Mohammed, P. Thurgood, G. Concilia, K. Peter, K. Khoshmanesh and S. Baratchi, Lab Chip, 2024, 24, 2347 DOI: 10.1039/D3LC00834G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements