Issue 15, 2024

A centrifugal-driven spiral microchannel microfiltration chip for emulsion and deformable particle sorting

Abstract

Droplet sorting and enrichment, as a prominent field within microfluidic technology, represent a pivotal stage in the manipulation of droplets and particles. In recent times, droplet sorting methods based on lab-on-disk (LOD) have garnered significant interest among researchers for their inherent merits, including high throughput, ease of operation, seamless device integration, and independence from supplementary driving forces. This study introduces a centrifugal force-driven microfluidic chip comprising spiral microchannels. The chip incorporates microhole arrays along the sidewall of the spiral channels, enabling size-based sorting and enrichment of microdroplets under the influence of multiple forces. Firstly, a comparative analysis was performed to assess the influence of the separation port structure and rotational speed on efficiency, and a mechanical modeling approach was employed to conduct kinetic analyses of droplet behavior during instantaneous separation. Those findings demonstrated a good agreement with the experimental results at ω < 100 rpm. Subsequently, sorting experiments on homogeneous droplets indicated that repetitive sorting could increase the recovery ratios, RT(α), of high-concentration droplets (20.7%) from 35.3% to over 80%. We also conducted a sorting experiment on three-component homogeneous-phase emulsions using a serially connected chip array, and the sorting throughput was 0.58 mL min−1. As a result, the RT(α) for 60 and 160 μm droplets were 99.4% and 88.9%, respectively. Lastly, we conducted elution experiments and dual-sample sorting on a single chip, and the fluorescence results demonstrated that this study provided an efficient and non-cross-contaminating sorting method for non-homogenous phase multi-sample microreactor units.

Graphical abstract: A centrifugal-driven spiral microchannel microfiltration chip for emulsion and deformable particle sorting

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2024
Accepted
03 Jul 2024
First published
04 Jul 2024

Lab Chip, 2024,24, 3738-3751

A centrifugal-driven spiral microchannel microfiltration chip for emulsion and deformable particle sorting

Y. Cai, Z. Li, C. Sun, X. Zhao, S. Wu, G. Huang, S. Tang, P. Dai, X. Wei and H. You, Lab Chip, 2024, 24, 3738 DOI: 10.1039/D4LC00260A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements