Improved Teflon lift-off for droplet microarray generation and single-cell separation on digital microfluidic chips†
Abstract
Droplet microarrays (DMAs) leveraging wettability differences are instrumental in digital immunoassays, single-cell analysis, and high-throughput screening. This study introduces an enhanced Teflon lift-off process to fabricate hydrophilic–hydrophobic patterns on a digital microfluidic (DMF) chip, thereby integrating DMAs with DMF technology. By employing DMF for droplet manipulation and utilizing wettability differences, the automated generation of high-throughput DMAs was achieved. The volume of the microdroplets ranged from picoliters to nanoliters. For droplets with a diameter of 150 μm, the array density reached up to 1282 cm−2. We systematically investigated the influence of various DMF parameters on the formation of DMAs and applied this technique to particle distribution, achieving a single-cell isolation rate of approximately 30%. We believe that this method will be a potent tool to enhance the capabilities of DMAs and DMF technology and extend their applicability across more fields.