High-performance functionalized anthracene organic supercapacitors†
Abstract
Organic supercapacitors have attracted significant interest as promising energy storage vehicles due to their favorable electrochemical properties, synthetic versatility, low cost, and environmental friendliness. We constructed supercapacitor electrodes comprising anthracene derivatives as the core component. Specifically, anthracene linked to functionalized ethylene displaying different electron acceptors endows the electrodes with tunable energy gaps and concomitant redox potentials. The conjugated anthracene units in such systems furnished the structural framework via adopting a crystalline nanorod organization via π–π stacking, while the delocalized electrons likely participated in the reversible redox reactions contributing to electrode pseudocapacitance. Asymmetric supercapacitors consisting of tert-butyl-ethylene-ketone-anthracene/polyaniline as the cathode were constructed, featuring excellent electrochemical performance. Specifically, the asymmetric device using an ionic liquid electrolyte displayed a broad voltage window, high cycling stability, and an energy density of 30 W h kg−1 at a power density of 620 W kg−1. Overall, we show that anthracene derivatives provide powerful redox-tunable electrode building blocks, expanding the molecular toolbox for organic supercapacitors.