Issue 5, 2024

High-performance functionalized anthracene organic supercapacitors

Abstract

Organic supercapacitors have attracted significant interest as promising energy storage vehicles due to their favorable electrochemical properties, synthetic versatility, low cost, and environmental friendliness. We constructed supercapacitor electrodes comprising anthracene derivatives as the core component. Specifically, anthracene linked to functionalized ethylene displaying different electron acceptors endows the electrodes with tunable energy gaps and concomitant redox potentials. The conjugated anthracene units in such systems furnished the structural framework via adopting a crystalline nanorod organization via π–π stacking, while the delocalized electrons likely participated in the reversible redox reactions contributing to electrode pseudocapacitance. Asymmetric supercapacitors consisting of tert-butyl-ethylene-ketone-anthracene/polyaniline as the cathode were constructed, featuring excellent electrochemical performance. Specifically, the asymmetric device using an ionic liquid electrolyte displayed a broad voltage window, high cycling stability, and an energy density of 30 W h kg−1 at a power density of 620 W kg−1. Overall, we show that anthracene derivatives provide powerful redox-tunable electrode building blocks, expanding the molecular toolbox for organic supercapacitors.

Graphical abstract: High-performance functionalized anthracene organic supercapacitors

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Mar 2024
Accepted
05 Apr 2024
First published
09 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Appl. Interfaces, 2024,1, 920-927

High-performance functionalized anthracene organic supercapacitors

S. Biswas, R. Manikandan, N. Shauloff, S. K. Bhaumik and R. Jelinek, RSC Appl. Interfaces, 2024, 1, 920 DOI: 10.1039/D4LF00076E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements