Issue 3, 2024

Determination of the vacancy distribution over Al cation sites in γ-Al2O3

Abstract

Although gamma-alumina (γ-Al2O3) is an extensively used material with wide-ranging applications due to its inherently high surface area and acidity, its atomic structure is still not fully understood. γ-Al2O3 is described as having a spinel-like structure, where the O sublattice has a face-centered cubic (FCC) arrangement and Al cations are placed in the spinel tetrahedral and octahedral interstitial sites. Achieving the correct stoichiometry of Al2O3, however, requires the introduction of Al vacancies into some of the interstitial sites. Despite the importance of accurately describing the structure of γ-Al2O3, the distribution of vacancies between tetrahedral and octahedral sites remains unclear, in part because of the usually poor crystalline quality of γ-Al2O3 that has often been used in previous studies. To determine the actual cation distribution in γ-Al2O3, single-crystalline γ-Al2O3 was investigated using a correlative approach of experimental and simulated selected-area electron diffraction (SAED) and high-resolution electron energy-loss spectroscopy (EELS). Comparison of the reflection intensities in single-crystal SAED to simulated SAED from models with varied vacancy distributions revealed that vacancies exist primarily on tetrahedral sites, contrary to the placement of vacancies on octahedral sites proposed in several common models. Comparison of EELS spectra—acquired with the highest energy resolution reported so far for γ-Al2O3—with ab initio multiple scattering EELS simulations confirmed the distribution of vacancies on tetrahedral sites. These results enable more accurate modeling of γ-Al2O3 to better predict its properties in existing and future applications.

Graphical abstract: Determination of the vacancy distribution over Al cation sites in γ-Al2O3

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2023
Accepted
30 Nov 2023
First published
22 Dec 2023
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 1078-1087

Determination of the vacancy distribution over Al cation sites in γ-Al2O3

H. O. Ayoola, C. Li, S. D. House, M. P. McCann, J. J. Kas, J. R. Jinschek, J. J. Rehr, W. A. Saidi and J. C. Yang, Mater. Adv., 2024, 5, 1078 DOI: 10.1039/D3MA00549F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements