Beyond acid treatment of PEDOT:PSS: decoding mechanisms of electrical conductivity enhancement†
Abstract
Despite widespread recognition of acid treatment as a crucial method for enhancing electrical conductivity and expanding the applications of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), the mechanisms behind this improvement are yet under debate. In this study, we delved into the impact of various acids, including H2SO4, H3PO4, HCl, and HCOOH, on the electrical conductivity and structural alterations of PEDOT:PSS thick films (∼5 μm). Our findings demonstrate a robust correlation between high electrical conductivity and well-developed crystallinity. The high degree of crystallinity originates from a densely packed and well-ordered structure, which is remarkably influenced by the inter-lamellar stacking distance and the alignment of PEDOT lamella along the edge-on direction. Notably, through the combination of acid treatment and hot-pressing techniques, we achieved a remarkable enhancement in the electrical conductivity of PEDOT:PSS thick films, setting a new record of 3360 S cm−1. These films also exhibit remarkable properties, including high bending flexibility and tensile strength (42 MPa). As a result, the resultant strong, flexible, and highly conductive films can be used for high-end electromagnetic interference (EMI) shielding applications where it presented a high EMI shielding effectiveness and specific EMI shielding effectiveness of 51.79 dB and 75057.97 dB cm2 g−1 at a thickness of 4.66 μm, respectively.