Issue 10, 2024

Gold nanoparticle-loaded MoS2 nanosheets with peroxidase-like and pyranose oxidase-like activities for bio-enzyme-free visual detection of glucose, xylose and galactose

Abstract

Enzyme mimics with dual enzyme-like activities can catalyse cascade reactions with high efficiency and thus play a significant role in biochemistry since multistep cascade reactions often occur in biocatalysis. Especially, a nanozyme that simultaneously possesses peroxidase-like and pyranose oxidase (POx)-like activities is highly desired since it can be used for bio-synthetizing rare sugars and fabricating bio-enzyme-free colorimetric methods for the detection of various pyranoses. We herein prepared a novel dual-active nanozyme, which simultaneously possesses enhanced and stable peroxidase-like and POx-like activities, by loading gold nanoparticles (AuNPs) on MoS2 nanosheets (AuNPs@MoS2). The prepared AuNPs@MoS2 nanozyme can catalyse various tandem reactions of pyranose oxidation and H2O2-mediated oxidation of TMB with high efficiency and, therefore, can be used to fabricate bio-enzyme-free colorimetric methods for the detection of various monosaccharides with a pyranyl ring, including glucose, xylose and galactose. Based on the AuNPs@MoS2 nanozyme, we successfully developed bio-enzyme-free colorimetric methods for the detection of glucose, xylose and galactose with a visual detection limit of 0.2–0.3 mM and a spectrometry detection limit of 5.0–11 μM. The developed colorimetric glucose, xylose and galactose detection methods were successfully used to detect glucose in serum, xylose in bread and galactose in milk, respectively, with a recovery of 89–108% and a relative standard deviation (RSD, n = 5) of <5%. With enhanced peroxidase-like and POx-like activities and good stability, the developed AuNPs@MoS2 provided a promising dual-active nanozyme for the bio-enzyme-free catalysis of various cascade reactions for the oxidation of various monosaccharides with a pyranyl ring and for further fabricating bio-enzyme-free, cost-effective and simple colorimetric sensors for the visual detection of various monosaccharides with a pyranyl ring, including glucose, xylose and galactose.

Graphical abstract: Gold nanoparticle-loaded MoS2 nanosheets with peroxidase-like and pyranose oxidase-like activities for bio-enzyme-free visual detection of glucose, xylose and galactose

Supplementary files

Article information

Article type
Paper
Submitted
30 Jan 2024
Accepted
26 Mar 2024
First published
27 Mar 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 4221-4230

Gold nanoparticle-loaded MoS2 nanosheets with peroxidase-like and pyranose oxidase-like activities for bio-enzyme-free visual detection of glucose, xylose and galactose

S. Fu, J. Liu, S. Wu, L. Zhang, X. Zhang and F. Fu, Mater. Adv., 2024, 5, 4221 DOI: 10.1039/D4MA00086B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements