Issue 15, 2024

Upcycling waste plastic into 2D-carbon nanomaterials for high-performance supercapacitors by incorporating NiCo2O4: a sustainable approach to renewable energy

Abstract

A two-step catalytic pyrolysis technique is utilized to produce reduced graphene oxide (rGO) from waste plastic and a hydrothermal synthetic route to produce NiCo2O4 nanorods and NiCo2O4@WPrGO nanocomposites. The waste plastic derived reduced graphene oxide (WPrGO) provided the conductive network and stimulated the growth of NiCo2O4 nanorods on its surface in order to increase the collection and transportation of electrons during electrochemical charge storage performance. This technique makes NiCo2O4@WPrGO suitable for supercapacitor electrode materials. The electrochemical properties of the composites were evaluated using both two and three-electrode systems in 2 M KOH solution. The outstanding specific capacitance values of the NiCo2O4@WPrGO material and its symmetric prototype cell from CV and GCD were around 1566 F g−1 and 400 F g−1 (at scan rate of 2 mV s−1) and 1105 F g−1 and 334 F g−1 (at current density of 0.5 A g−1), respectively, with 2 M KOH electrolyte. Moreover, the assembled symmetric and asymmetric cell delivers high energy densities of 17 W h kg−1 and 45.08 W h kg−1 at the power densities of 153 W kg−1 and 980 W kg−1 respectively, along with high cycling stability of 86% and 88.5% after 15 000 and 3000 cycles, respectively.

Graphical abstract: Upcycling waste plastic into 2D-carbon nanomaterials for high-performance supercapacitors by incorporating NiCo2O4: a sustainable approach to renewable energy

Article information

Article type
Paper
Submitted
05 May 2024
Accepted
25 Jun 2024
First published
26 Jun 2024
This article is Open Access
Creative Commons BY license

Mater. Adv., 2024,5, 6255-6269

Upcycling waste plastic into 2D-carbon nanomaterials for high-performance supercapacitors by incorporating NiCo2O4: a sustainable approach to renewable energy

D. Bhatt, M. Pathak, N. Thakur, G. Tatrari, T. Rath, Z. Judeh and N. G. Sahoo, Mater. Adv., 2024, 5, 6255 DOI: 10.1039/D4MA00469H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements