Issue 21, 2024

The effect of low temperature on poly(3-methyl-N-vinylcaprolactam)-b-poly(N-vinylpyrrolidone) diblock copolymer nanovesicles assembled from all-aqueous media

Abstract

Nanosized polymeric vesicles (polymersomes) self-assembled from double hydrophilic copolymers of poly(3-methyl-N-vinylcaprolactam)n-b-poly(N-vinylpyrrolidone)m (PMVCn-b-PVPONm) using all aqueous media are a promising platform for biomedical applications, because of their superior stability over liposomes in vivo and high loading capacity. Herein, we explored the temperature-sensitive behavior of PMVC58-b-PVPON65 vesicles using transmission electron microscopy (TEM), dynamic light scattering (DLS), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) in response to lowering the solution temperature from 37 to 25, 20, 14 and 4 °C. The copolymer vesicles with an average size of 350 nm at 37 °C were assembled from the diblock copolymer dissolved in aqueous solution at 4 °C. We show that while the polymersome's size gradually decreases upon the temperature decrease from 37 to 4 °C, the average shell thickness increases from 17 nm to 25 nm, respectively. SANS study revealed that the PMVC58-b-PVPON65 vesicle undergoes a gradual structure evolution from a dense-shell vesicle at 37–25 °C to a highly-hydrated shell vesicle at 20–14 °C to molecular chain aggregates at 4 °C. From SANS contrast matching study, this vesicle behavior is found to be driven by the gradual rehydration of PMVC block at 37–14 °C. The shell hydration at 20–14 °C also correlated with the 4.4-fold decrease in the relative fluorescence intensity from vesicle-encapsulated fluorescent dye, indicating ∼80% of the dye release within 12 hours after the vesicle exposure to 14 °C. No significant (<5%) dye release was observed for the vesicle solutions at 37–20 °C, indicating excellent cargo retention inside the vesicles. Our study provides new fundamental insights on temperature-sensitive polymer vesicles and demonstrates that the copolymer assembly into polymersomes can be achieved by decreasing a copolymer aqueous solution temperature below 14 °C followed by solution exposure to ≥20 °C. This type of all-aqueous assembly, instead of nanoprecipitation from organic solvents or solvent exchange, can be highly desirable for encapsulating a wide range of biological molecules, including proteins, peptides, and nucleic acids, into stable polymer vesicles without a need for organic solvents for dissolution of the copolymers that are amphiphilic at physiologically relevant temperatures of 20–37 °C.

Graphical abstract: The effect of low temperature on poly(3-methyl-N-vinylcaprolactam)-b-poly(N-vinylpyrrolidone) diblock copolymer nanovesicles assembled from all-aqueous media

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2024
Accepted
01 Oct 2024
First published
03 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 8575-8587

The effect of low temperature on poly(3-methyl-N-vinylcaprolactam)-b-poly(N-vinylpyrrolidone) diblock copolymer nanovesicles assembled from all-aqueous media

V. Kozlovskaya, Y. Yang, S. Qian and E. Kharlampieva, Mater. Adv., 2024, 5, 8575 DOI: 10.1039/D4MA00831F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements