Issue 24, 2024

Design and characterization of multi-component lamellar materials based on MWW-type zeolitic layers and metal oxide sub-domains

Abstract

The preparation of multi-component catalysts with tailored properties and high activity is essential for advancing sustainable catalytic processes and contributes to a healthy planet. In this study, we synthesised several families of multi-component materials by combining MWW-type zeolitic layers with MgAlCe oxide sub-domains at the nanometric scale, employing different approaches. Methods I and II involve the co-precipitation of MgAlCe LDH using various sources of Mg2+, Ce4+ and Al3+ in the presence of MWW zeolites. Method III utilizes swelling and intercalation of MWW with pre-formed LDH phases. After calcination, multi-component materials with integrated zeolitic layers and MgAlCe oxides were obtained, revealing significant structural differences across the methods. Method II allowed the co-precipitation of MgAlCe LDH sub-domains and promoted strong interactions between these LDH sub-domains and the MWW zeolite structure, disrupting regular LDH stacking. This interaction affects the structural organisation and results in inconsistently and irregularly stacked LDH layers, as shown by XRD patterns. Moreover, the presence of strong interactions with the zeolitic framework led to modify the chemical environment of the MWW structure. The characterization study revealed that these materials possess accessible acidic, basic, and redox sites, underscoring their potential as multi-functional catalysts. The homogeneous distribution of active sites within the porous zeolitic network would facilitate cooperative interactions between active centres of the zeolite structure and metallic oxides, while the small particle size and high dispersion of MgAlCe oxides should improve both the accessibility to these active sites and their number. Collectively, these structural and chemical properties make these multi-functional and component materials promising candidates for heterogeneous catalytic applications contributing to sustainable development and supporting efforts for a healthier planet.

Graphical abstract: Design and characterization of multi-component lamellar materials based on MWW-type zeolitic layers and metal oxide sub-domains

Supplementary files

Article information

Article type
Paper
Submitted
18 Sep 2024
Accepted
06 Nov 2024
First published
07 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 9684-9698

Design and characterization of multi-component lamellar materials based on MWW-type zeolitic layers and metal oxide sub-domains

C. Esteban, A. Velty and U. Díaz, Mater. Adv., 2024, 5, 9684 DOI: 10.1039/D4MA00942H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements