1-Benzylindoles as inhibitors of cytosolic phospholipase A2α: synthesis, biological activity, aqueous solubility, and cell permeability†
Abstract
Cytosolic phospholipase A2α (cPLA2α) is considered an interesting target for the development of new anti-inflammatory drugs, as it is significantly involved in the formation of pro-inflammatory lipid mediators. Recently, in a ligand-based virtual screening approach, 2,4-dichlorobenzyl-substituted 4-[2-(indol-3-ylmethylene)hydrazineyl]benzoic acid 7 was found to be an inhibitor of cPLA2α with micromolar activity. This compound has now been systematically varied to increase inhibitory potency. The studies performed led to 5-(1-benzylindol-3-ylmethyl)-2H-tetrazol-2-yl)pentanoic acid derivatives that exhibited submicromolar activity against the enzyme. The most potent compounds were also tested for their water solubility and for permeability in a Caco-2 model. Among other things, it was found that in Caco-2 cells, the pentanoic acid chain of the molecules can be metabolised to a considerable extent to propionic acid by β-oxidation.