Issue 6, 2024

Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update

Abstract

Cancer is a complex disease and the second leading cause of death globally, and breast cancer is still a leading cause of cancer death in women. Tamoxifen is the most commonly used drug for breast cancer (ER-positive) treatment and chemoprevention, saving the lives of millions of patients every year. In addition, the tamoxifen template has been explored extensively for the development of selective estrogen receptor modulators (SERMs) applicable in breast cancer, osteoporosis, and postmenopausal symptom treatment. Numerous anticancer drugs, including tamoxifen, are in use, but the complexity and heterogeneous nature of cancer complicate the effect of conventional targeted drugs, leading to adverse reactions and resistance. One of the significant approaches to overcome these shortcomings is drug hybrids, generated by covalently linking two or more active pharmacophores. These drug hybrids are remarkably effective in acting on multiple drug targets with higher selectivity and specificity. In recent years, several tamoxifen hybrids have been discovered as potential candidates for cancer treatment. The review highlights the recent progress in developing anticancer hybrids, including organometallic, fluorescent, photocaged, and novel ligand-based tamoxifen hybrids. It also demonstrates the significance of merging various pharmacophores with tamoxifen to produce more potent, precise, and effective anticancer agents. The study offers valuable knowledge to researchers working on cancer research with the hope of enhancing drug potency and reducing drug toxicity to improve cancer patients' lives.

Graphical abstract: Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update

Article information

Article type
Review Article
Submitted
12 Nov 2023
Accepted
14 Apr 2024
First published
17 Apr 2024

RSC Med. Chem., 2024,15, 1877-1898

Potential of covalently linked tamoxifen hybrids for cancer treatment: recent update

Shagufta, I. Ahmad, D. J. Nelson, M. I. Hussain and N. A. Nasar, RSC Med. Chem., 2024, 15, 1877 DOI: 10.1039/D3MD00632H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements