Discovery of new 1,3-diphenylurea appended aryl pyridine derivatives as apoptosis inducers through c-MET and VEGFR-2 inhibition: design, synthesis, in vivo and in silico studies†
Abstract
Interest has been generated in VEGFR-2 and c-MET as potential receptors for the treatment of different malignancies. Using aryl pyridine derivatives with 1,3-diphenylurea attached, a number of promising dual VEGFR-2 and c-MET inhibitors were developed and synthesized. Regarding the molecular target, compounds 2d, 2f, 2j, 2k, and 2n had potent IC50 values of 65, 24, 150, 170, and 18 nM against c-MET, respectively. Additionally, they had potent IC50 values of 310, 35, 290, 320, and 24 nM against VEGFR-2, respectively. Regarding cytotoxicity, compounds 2d, 2f, 2j, 2k and 2n exhibited potent cytotoxicity against MCF-7 with IC50 values in the range 0.76–21.5 μM, and they showed promising cytotoxic activity against PC-3 with IC50 values in the range 1.85–3.42 μM compared to cabozantinib (IC50 = 1.06 μM against MCF-7 and 2.01 μM against PC-3). Regarding cell death, compound 2n caused cell death in MCF-7 cells by 87.34-fold; it induced total apoptosis by 33.19% (8.04% for late apoptosis, 25.15% for early apoptosis), stopping their growth in the G2/M phase, affecting the expression of apoptosis-related genes P53, Bax, caspases 3 and 9 and the anti-apoptotic gene, Bcl-2. In vivo study illustrated the anticancer activity of compound 2n by reduction of tumor mass and volume, and the tumor inhibition ratio reached 56.1% with an improvement of hematological parameters. Accordingly, compound 2n can be further developed as a selective target-oriented chemotherapeutic against breast cancer.