Issue 10, 2024

Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer

Abstract

Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (Cel-N) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. Cel-N displayed potent activities against all the tested ovarian cancer cells, with the lowest IC50 value of 0.14–0.25 μM. Further studies showed that Cel-N effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44+CD24 and ALDH+ cells, and induced ROS production. Furthermore, western blot analysis indicated that Cel-N significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, Cel-N could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, Cel-N showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of Cel-N is stronger than celastrol. Cel-N attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that Cel-N is a potent drug candidate for ovarian cancer.

Graphical abstract: Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer

Supplementary files

Article information

Article type
Research Article
Submitted
24 Jun 2024
Accepted
07 Aug 2024
First published
10 Aug 2024

RSC Med. Chem., 2024,15, 3433-3443

Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer

M. Liu, N. Li, Z. Wang, S. Wang, S. Ren and X. Li, RSC Med. Chem., 2024, 15, 3433 DOI: 10.1039/D4MD00468J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements