Issue 23, 2024

Design principle of disordered rocksalt type overlithiated anode for high energy density batteries

Abstract

Rechargeable lithium–ion batteries with high energy density and fast-charging capability are vital for commercial applications. Disordered rocksalt (DRX) materials with a cation/anion ratio greater than one, achieved through additional lithium insertion, have emerged as promising high-rate anode candidates. Inspired by the previously reported Li3+xV2O5 (0 ≤ x ≤ 2) anode, a comprehensive search was conducted for all potential redox centers using high-throughput density functional theory (DFT) computations. This study examined 23 redox centers in a prototype formula Li3+xV2O5 (0 ≤ x ≤ 2) with the DRX structure, analyzing aspects such as voltage curve, theoretical capacity, energy density, phase stability, electronic conductivity, and volumetric change during cycling. Promising candidates were identified with redox centers including V, Cr, Nb, Mn, and Fe, marking them as potential anode materials. Additionally, this research revealed the origin of the low voltage in DRX anodes and proposed a method to optimize the average voltage by tuning the relative energies among structures with varying lithium contents. This work provides compositional design principles for the new promising DRX anode of LIBs with high energy density, fast-charging capability, and good cycling stability.

Graphical abstract: Design principle of disordered rocksalt type overlithiated anode for high energy density batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
05 Jun 2024
Accepted
12 Sep 2024
First published
13 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2024,11, 6049-6056

Design principle of disordered rocksalt type overlithiated anode for high energy density batteries

Y. He, Z. He and B. Ouyang, Mater. Horiz., 2024, 11, 6049 DOI: 10.1039/D4MH00715H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements