Issue 5, 2024

Towards graphene-based asymmetric diodes: a density functional tight-binding study

Abstract

Self-consistent charge density functional tight-binding (DFTB) calculations have been performed to investigate the electrical properties and transport behavior of asymmetric graphene devices (AGDs). Three different nanodevices constructed of different necks of 8 nm, 6 nm and 4 nm, named Graphene-N8, Graphene-N6 and Graphene-N4, respectively, have been proposed. All devices have been tested under two conditions of zero gate voltage and an applied gate voltage of +20 V using a dielectric medium of 3.9 epsilon interposed between the graphene and the metallic gate. As expected, the results of AGD diodes exhibited strong asymmetric I(V) characteristic curves in good agreement with the available experimental data. Our predictions implied that Graphene-N4 would achieve great asymmetry (A) of 1.40 at |VDS| = 0.2 V with maximum transmittance (T) of 6.72 in the energy range 1.30 eV. More importantly, while the A of Graphene-N4 was slightly changed by applying the gate voltage, Graphene-N6/Graphene-N8 showed a significant effect with their A increased from 1.20/1.03 under no gate voltage (NGV) to 1.30/1.16 under gate voltage (WGV) conditions. Our results open up unprecedented numerical prospects for designing tailored geometric diodes.

Graphical abstract: Towards graphene-based asymmetric diodes: a density functional tight-binding study

Article information

Article type
Paper
Submitted
05 Aug 2023
Accepted
02 Feb 2024
First published
19 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024,6, 1548-1555

Towards graphene-based asymmetric diodes: a density functional tight-binding study

E. Mohebbi, E. Pavoni, L. Pierantoni, P. Stipa, A. Hemmetter, E. Laudadio and D. Mencarelli, Nanoscale Adv., 2024, 6, 1548 DOI: 10.1039/D3NA00603D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements