Issue 4, 2024

Nanomagnetic CoFe2O4@SiO2-EA-H3PO4 as a zwitterionic catalyst for the synthesis of bioactive pyrazolopyranopyrimidines and dihydropyrano[2,3-c]pyrazoles

Abstract

This study presents the development of a phosphoric acid-based zwitterionic catalyst immobilized on CoFe2O4 nanoparticles [CoFe2O4@SiO2-EA-H3PO4]. The structure of the nanocatalyst CoFe2O4@SiO2-EA-H3PO4 was identified by applying several spectroscopic techniques, i.e. FT-IR, SEM, TEM, XRD, EDX, elemental Mapping, VSM, TGA, and BET techniques. The catalytic efficiency of CoFe2O4@SiO2-EA-H3PO4 was evaluated in the water-based multicomponent synthesis of pyrazolopyranopyrimidine and dihydropyrano[2,3-c]pyrazole derivatives. Subsequently, an exploration of the antibacterial properties of the compounds was conducted. The catalytic system offers several advantages, encompassing high efficiency, brief reaction duration, uncomplicated operation, and facile recycling of the catalyst.

Graphical abstract: Nanomagnetic CoFe2O4@SiO2-EA-H3PO4 as a zwitterionic catalyst for the synthesis of bioactive pyrazolopyranopyrimidines and dihydropyrano[2,3-c]pyrazoles

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2023
Accepted
21 Jan 2024
First published
05 Feb 2024
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2024,6, 1227-1240

Nanomagnetic CoFe2O4@SiO2-EA-H3PO4 as a zwitterionic catalyst for the synthesis of bioactive pyrazolopyranopyrimidines and dihydropyrano[2,3-c]pyrazoles

A. Mirzaie, L. Shiri, M. Kazemi, N. Sadeghifard and V. H. Kaviar, Nanoscale Adv., 2024, 6, 1227 DOI: 10.1039/D3NA00900A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements