Development of an advanced multiwavelength emission detector for the analytical ultracentrifuge†
Abstract
An advanced design of the analytical ultracentrifuge with multiwavelength emission detection (MWE-AUC) is presented which offers outstanding performance concerning the spectral resolution and range flexibility as well as the quality of the data acquired. The excitation by a 520 nm laser is complemented with a 405 nm laser. An external spectrograph with three switchable tunable gratings permits optimisation of the spectral resolution in an order of magnitude range while keeping the spectral region broad. The new system design leads also to a significant reduction of systematic signal noise and allows the assessment and control of inner filter effects. Details regarding the very large signal dynamic range are presented, an important aspect when studying samples in a broad concentration range of up to five orders of magnitude. Our system is validated by complementary studies on two biological systems, fluorescent BSA and GFP, using the commercial Optima AUC with absorbance detection for comparison. Finally, we demonstrate the capabilities of our second generation MWE-AUC with respect to multiwavelength characterisation of gold nanoclusters, which exhibit specific fluorescence depending on their structure. Overall, this work depicts an important stepping stone for the concept of multiwavelength emission detection in AUC. The MWE-AUC developed, being to our knowledge the first and sole one of its kind, has reached the development level suitable for the future in-depth studies of size-, shape- and composition-dependent emission properties of colloids.