RSM optimization of Friedel–Crafts C-acylation of para-fluorophenol over the catalysis of phosphomolybdic acid encapsulated in MIL-53 (Fe) metal organic frameworks
Abstract
In this research, a heterogeneous acid catalyst was synthesized by room temperature encapsulation of phosphomolybdic acid (PMA) in the pores of the MIL-53 (Fe) metal organic framework (MOF) under ultrasonic conditions. Then the catalytic activity of PMA@MIL-53 (Fe) was investigated in Friedel–Crafts C-acylation of para-fluorophenol, and this procedure was optimized using response surface methodology based on central composite design (RSM-CCD). The impact of critical reaction parameters including reaction duration, catalyst dosage, and PMA amount in the catalyst was optimized, leading to the formation of the target product in excellent yield at a short reaction time.