Issue 20, 2024

Hyperspectral enhanced imaging analysis of nanoparticles using machine learning methods

Abstract

Nanoparticle (NP)-based technologies have gained significant attention in targeted drug delivery, encompassing chemotherapies, photodynamic therapy, and immunotherapy. Hyperspectral imaging (HSI) emerges as a label-free, minimally invasive, and high-throughput technique for quantitative NP analysis. Despite its growing importance, the application of HSI to nanoparticle analysis, especially for label-free characterization and classification, remains limited. Here, we propose a novel method integrating hyperspectral imaging with a spectral noise reduction method and machine learning (ML) for robust nanoparticle classification. There are many challenges to extracting information from noisy and overlapping particles in HSI data. To surmount these challenges, we propose a spectral angle matching (SAM) algorithm to effectively denoise hyperspectral datasets. Complementing this, we employ a support vector machine (SVM) algorithm for classification, leveraging preprocessed HSI data to extract unique spectral signatures. Our hyperspectral imaging classification of multiple nanoparticle types reveals distinct spectral characteristics inherent to each class. The classification accuracy reaches 99.9% for single nanoparticle types, highlighting the efficiency of our method. In the case of classifying multiple particle types, the overall accuracy also reaches 99.9%. Visualization of the NP classification map further demonstrates the efficacy of our model. The application of the SAM-SVM algorithm in hyperspectral analysis outperforms traditional SVM methods in classifying multiple samples, highlighting the potential of our nanoparticle analysis. Our findings not only address the challenges posed by noisy and overlapping particles but also demonstrate the potential of hyperspectral imaging in advancing real-time and label-free detection systems for diverse biomedical applications.

Graphical abstract: Hyperspectral enhanced imaging analysis of nanoparticles using machine learning methods

Article information

Article type
Paper
Submitted
08 Mar 2024
Accepted
15 Aug 2024
First published
16 Aug 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024,6, 5171-5180

Hyperspectral enhanced imaging analysis of nanoparticles using machine learning methods

K. Lim and A. Ardekani, Nanoscale Adv., 2024, 6, 5171 DOI: 10.1039/D4NA00205A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements