Issue 14, 2024

Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system

Abstract

The abundant water wave energy on Earth stands as one of the most promising renewable blue energy sources, as it exhibits minimal dependence on weather, time and temperature. However, the low fluctuation frequency and extremely irregular nature of the wave energy restrict both the methods and efficiency of energy harvesting. In this study, a packed box-like hybrid nanogenerator was designed, comprising two single-electrode triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs). The outputs of both the TENG and EMG were demonstrated under different fluctuation frequencies and swing amplitudes, inspiring the development of a wave warning system. The maximum output voltage, current, and transferred charge of the single TENG, as part of hybrid nanogenerator (HG), reach approximately 110 V, 2.3 μA, and 50 nC, respectively. Its peak power reaches 85.3 μW under a resistance load of 20 MΩ at a frequency of 2 Hz. The EMG component produced maximum output voltages and currents of up to 0.45 V and 1.2 mA, respectively. The peak power is approximately 95.6 μW with a resistance load of 200 Ω. The output performances of the TENG and EMG increase linearly with the increase in the swing angle. Most importantly, a packed box-like hybrid nanogenerator can be conveniently packaged for harvesting energy from water waves. A wave energy collection array floating on the sea is proposed for harvesting blue energy and creating a self-powered ocean wave warning system.

Graphical abstract: Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2024
Accepted
06 May 2024
First published
10 May 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2024,6, 3566-3572

Triboelectric–electromagnetic hybrid nanogenerator for harvesting blue energy and creating an ocean wave warning system

W. Wang, Y. Zhang, G. Wu, Z. Zhao, Y. Wu and H. Zheng, Nanoscale Adv., 2024, 6, 3566 DOI: 10.1039/D4NA00222A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements