Issue 23, 2024

Unveiling the potential of MXene-fabricated catalysts: an effective approach for H2 generation from water splitting

Abstract

Hydrogen has enough potential and can be successfully used as an alternative to the conventional fuel. It can be successfully produced from water that is not only a sustainable source but exists everywhere on earth. Additionally, its combustion releases water that is quite safe and environment friendly. The current project was designed to generate hydrogen from catalytic water splitting on TiO2@Ti3C2Tx catalysts. To obtain the required catalytic characteristics, titania was engineered on Ti3C2Tx surfaces in situ using an ethanol-assisted solvothermal approach. After careful recovery, the catalysts were characterized and assessed for the photoreaction. All photoreactions were performed in a quartz reactor (150 mL), where hydrogen evolution activities were monitored on GC-TCD (Shimadzu-JP). The comparative activities indicated that TiO2@C and TiO2@Ti3C2Tx catalysts deliver 9.37 and 18.57 mmol g−1 h−1 of hydrogen, respectively. The higher activities of TiO2@Ti3C2Tx were attributed to the existence of higher active sites (charge trapping centres) on the multilayer MXene that progressively promote and facilitate redox reactions. Reason is that existence of titania on MXene interfaces develops heterojunctions that rectify the charge transfer; hence reduce the charge recombination (i.e., back reaction). On the basis of encouraging activities, it has been concluded that the aforementioned approach holds promise to replace the costly and conventional hydrogen generation technologies.

Graphical abstract: Unveiling the potential of MXene-fabricated catalysts: an effective approach for H2 generation from water splitting

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2024
Accepted
16 Oct 2024
First published
16 Oct 2024
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2024,6, 5861-5873

Unveiling the potential of MXene-fabricated catalysts: an effective approach for H2 generation from water splitting

M. Z. Abid, K. Rafiq, A. Rauf and E. Hussain, Nanoscale Adv., 2024, 6, 5861 DOI: 10.1039/D4NA00754A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements