Rationally constructing hollow N-doped carbon supported Ru catalysts for enhanced hydrogenation catalysis†
Abstract
The availability of catalytic sites for contact with reactants is a key issue to improve the performance of a catalyst, where constructing hollow structured nanomaterials has been considered as an effective strategy. Here, an N-doped carbon supported Ru catalyst with an interior cavity was synthesized by etching a MOF-derived core–shell precursor, in which metal Ru can be highly dispersed in the porous shell. This catalyst shows 98.7% conversion and >99% selectivity towards p-chloroaniline in the hydrogenation of p-chloronitrobenzene, which is better than the corresponding supported catalyst. Moreover, it also displays excellent stability with 5 cycle runs and good substrate universality for the hydrogenation of extensive substituted nitroarenes. Various characterization techniques and control experiments reveal the advantage of the unique structure to promote the mass transport and adsorption of reactant molecules on Ru sites. This work provides a novel strategy to design an efficient Ru-based catalyst for chemoselective hydrogenation.