Issue 37, 2024

Alginate nanoparticle synthesis using n-heptane and isopropyl myristate/AOT reverse micelles: the impact of the non-polar solvent, water content, and pH on the particle size and cross-linking efficiency

Abstract

The synthesis of monodisperse and stable alginate nanoparticles (ALG-NPs) was achieved through the crosslinking of sodium alginate with Ca2+ ions within sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles (RMs) as nano-templates. This study addresses the challenge of controlling the size and stability of nanoparticles, which is critical for their applications in drug delivery and tissue engineering. We explored the effects of varying the water content, the choice of non-polar solvent, and the pH of the resuspension medium on nanoparticle formation. Using both n-heptane and isopropyl myristate (IPM) to form AOT RMs, we found that nanoparticle size increased with water content in both solvents, attributed to differing degrees of crosslinking efficiency influenced by the proximity of alginate and calcium ions at lower water content. Notably, IPM produced smaller and more crosslinked ALG-NPs than n-heptane, likely due to its impact on interfacial interactions. Additionally, raising the pH of the resuspension medium resulted in smaller NPs due to enhanced alginate availability for cross-linking. These findings highlight the potential of AOT RMs as versatile templates for generating polymeric nanoparticles with precise control over their characteristics. The significant role of solvent choice and pH in tailoring nanoparticle properties is underscored, providing valuable insights for future applications. The controlled size and stability of these ALG-NPs make them excellent candidates for drug delivery systems and tissue engineering, given their biocompatibility and biodegradability.

Graphical abstract: Alginate nanoparticle synthesis using n-heptane and isopropyl myristate/AOT reverse micelles: the impact of the non-polar solvent, water content, and pH on the particle size and cross-linking efficiency

Supplementary files

Article information

Article type
Paper
Submitted
01 Jul 2024
Accepted
14 Aug 2024
First published
14 Aug 2024

New J. Chem., 2024,48, 16169-16176

Alginate nanoparticle synthesis using n-heptane and isopropyl myristate/AOT reverse micelles: the impact of the non-polar solvent, water content, and pH on the particle size and cross-linking efficiency

F. M. Duque, N. Mariano Correa and R. Dario Falcone, New J. Chem., 2024, 48, 16169 DOI: 10.1039/D4NJ02981J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements