Issue 46, 2024

Strengthened, thermoreversible and conductive rubber with dual dynamic networks for strain sensors

Abstract

Endowing conductive composites with thermoreversible properties is important for improving the stability and extending the service life of the material and are in line with today's concept of green chemistry. In this study, thermoreversible conductive XNBR-based composites with excellent mechanical, reprocessable and conductive properties were prepared via a simple and feasible emulsion blending technique. Carbon black was used as a conductive filler, and epoxy resin and zinc chloride (ZnCl2) were added as a crosslinking agent into carboxylated nitrile butadiene rubber (XNBR) through latex mixing. In particular, the –COOH group on the XNBR molecular chain forms β-hydroxy ester and ionic bonds with epoxy groups and Zn2+, respectively, constituting a dual dynamic network structure. The prepared rubber has a tensile strength of 10.81 MPa, an elongation at break of more than 300%, and a conductivity of up to 0.0102 S m−1. Moreover, the composite has a high gauge factor (18.4) under fairly large strain (100%) and can accurately detect human activities, thus showing great potential as strain sensors. In addition, the tensile strength and electrical conductivity of the repeatedly processed material can reach 101% and 60%, respectively, of the original sample. Furthermore, based on its stretchability and conductivity, the composite is sensitively capable of capturing variation in strain, which shows great potential for application in strain sensors.

Graphical abstract: Strengthened, thermoreversible and conductive rubber with dual dynamic networks for strain sensors

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2024
Accepted
31 Oct 2024
First published
31 Oct 2024

New J. Chem., 2024,48, 19589-19600

Strengthened, thermoreversible and conductive rubber with dual dynamic networks for strain sensors

Y. Yang and X. Wang, New J. Chem., 2024, 48, 19589 DOI: 10.1039/D4NJ04446K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements