Reformation of La0.7Sr0.3MnO3 properties by using ZnO in La0.7Sr0.3MnO3-ZnO heterostructures grown on (001) oriented Si†
Abstract
Study of the available density of states (DOS) close-to-zero bias for conduction in strongly correlated electron systems, such as half-metallic La0.7Sr0.3MnO3 (LSMO) and its heterostructures, is important for fundamental and application reasons. As the DOS is proportional to the differential conductance (dI/dV), the dI/dV of a 120 Å LSMO film and its reformation in LSMO/ZnO heterostructures was investigated for different ZnO thicknesses. Unlike in conventional metals, the dI/dV of LSMO exhibits a power-law dependent zero-bias anomaly, i.e., dI/dV ∝ Vm (m ∼ 1) near zero bias in the ferromagnetic metallic state at 10 K. The growth of ZnO on LSMO reforms the linear dI/dVvs. V of LSMO near zero bias to non-linear. The exponent ‘m’ becomes ∼0.5 for a higher ZnO thickness, revealing increased electron–electron interactions and suppression of Kondo-like, double and superexchange interactions, which are responsible for the depression of the DOS of LSMO near zero bias. In a magnetically disordered state, i.e., around the Curie temperature, ZnO reforms the linear V-shaped dI/dV vs. V of LSMO to parabolic U-shaped dI/dVvs.V and controls the electron concentrations in the t2g-orbitals of Mn realized from the DOS simulations. Additionally, ZnO introduces a peak in the dI/dV vs. V due to Fowler–Nordheim tunnelling, and the peak voltage can be tuned by varying the ZnO thickness or temperature from 300 K to 360 K. Such functions of ZnO yield major perspectives for novel applications in thin-film-based devices.