Issue 5, 2024

Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have emerged as a highly promising platform for the development of photodetectors (PDs) owing to their remarkable electronic and optoelectronic properties. Highly effective PDs can be obtained by making use of the exceptional properties of 2D materials, such as their high transparency, large charge carrier mobility, and tunable electronic structure. The photodetection mechanism in 2D TMD-based PDs is thoroughly discussed in this article, with special attention paid to the key characteristics that set them apart from PDs based on other integrated materials. This review examines how single TMDs, TMD–TMD heterostructures, TMD–graphene (Gr) hybrids, TMD–MXene composites, TMD–perovskite heterostructures, and TMD–quantum dot (QD) configurations show advanced photodetection. Additionally, a thorough analysis of the recent developments in 2D TMD-based PDs, highlighting their exceptional performance capabilities, including ultrafast photo response, ultrabroad detectivity, and ultrahigh photoresponsivity, attained through cutting-edge methods is provided. The article conclusion highlights the potential for ground-breaking discoveries in this fast developing field of research by outlining the challenges faced in the field of PDs today and providing an outlook on the prospects of 2D TMD-based PDs in the future.

Graphical abstract: Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review

Article information

Article type
Review Article
Submitted
04 Oct 2023
Accepted
02 Dec 2023
First published
11 Jan 2024

Nanoscale, 2024,16, 2097-2120

Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review

A. Ahmed, M. Zahir Iqbal, A. Dahshan, S. Aftab, H. H. Hegazy and E. S. Yousef, Nanoscale, 2024, 16, 2097 DOI: 10.1039/D3NR04994A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements