Enhanced magnetic susceptibility in Ti3C2Tx MXene with Co and Ni incorporation†
Abstract
Magnetic nanomaterials are sought to provide new functionalities for applications ranging from information processing and storage to energy generation and biomedical imaging. MXenes are a rapidly growing family of two-dimensional transition metal carbides and nitrides with versatile chemical and structural diversity, resulting in a variety of interesting electronic and optical properties. However, strategies for producing MXenes with tailored magnetic responses remain underdeveloped and challenging. Herein, we incorporate elemental Ni and Co into Ti3C2Tx MXene by mixing with dilute metal chloride solutions. We achieve a uniform distribution of Ni and Co, confirmed by X-ray fluorescence (XRF) mapping with nanometer resolution, with Ni and Co concentrations of approximately 2 and 7 at% relative to the Ti concentration. The magnetic susceptibility of these Ni- and Co-incorporated Ti3C2Tx MXenes is one to two orders of magnitude larger than pristine Ti3C2Tx, illustrating the potential for dilute metal incorporation to enhance linear magnetic responses at room temperature.