Tuning the dimensional order in self-assembled magnetic nanostructures: theory, simulations, and experiments†
Abstract
A major obstacle to building nanoscale magnetic devices or even experimentally studying novel nanomagnetic spin textures is the present lack of a simple and robust method to fabricate various nano-structured alloys. Here, theoretical and experimental investigations were conducted to understand the underlying physical mechanisms of magnetic particle self-assembly in zero applied magnetic field. By changing the amount of NaOH added during the synthesis, we demonstrate that the resulting morphology of the assembled FeCo structure can be tuned from zero-dimensional (0D) nanoparticles to one-dimensional (1D) chains, and even three-dimensional (3D) networks. Two numerical simulations were developed to predict aspects of nanostructure formation by accounting for the magnetic interactions between individual magnetic nanoparticles. The first utilized the Boltzmann distribution to determine the equilibrium structure of a nanochain, iteratively predicting the local deviation angle θ of each particle as it attaches to a forming chain. The second simulation illustrates the differences in nanostructure arrangement and dimensionality (0D, 1D, or 3D) that arise from random interactions at various nanoparticle densities. The simulation results closely match the experimental findings, as seen from SEM images, demonstrating their ability to capture the system's structural properties. In addition, magnetic hysteresis measurements of the samples were performed along two orthogonal directions to show the influence of dimensional order on the magnetic behavior. The normalized remanence (MR/MS||) of the FeCo alloys increases as the dimensions of nanostructures are increased. Of the three cases, the FeCo 3D network structures exhibit the highest normalized nanostructure remanence of 0.33 and an increased coercivity to above 200 Oe at 300 K. This combined numerical and experimental investigation aims to shed light on the preparation of FeCo nanostructures with tailorable dimensional order and it opens new avenues for exploring the complex spin textures and coercive behavior of these multi-dimensional nanomagnetic structures.