Issue 17, 2024

Elucidating the assembly of nanoparticle organic hybrid materials (NOHMs) near an electrode interface with varying potential using neutron reflectivity

Abstract

A critical concern regarding electrolyte formulation in an electrochemical environment is the impact of the interaction of the multiple components (i.e., supporting electrolyte or additive) with the electrode surface. Recently, liquid-like neat Nanoparticle Organic Hybrid Materials (NOHMs) have been considered as an electrolyte component to improve the transport of redox-active species to the electrode surface. However, the structure and assembly of the NOHMs near the electrode surface is unknown and could significantly impact the electrode–electrolyte interface. Hence, we have investigated the depth profile of polyetheramine (HPE) polymer and NOHM-I-HPE (nanoparticles with ionically bonded HPE polymer) in deuterated water (D2O) in the presence of two different salts (KHCO3 and ZnCl2) near two different electrode surfaces using neutron reflectometry. Moreover, the depth profile of the NOHM-I-HPE near the electrode surface in a potential has also been studied with in situ reflectivity experiments. Our results indicate that a change in the chemical structure/hydrophilicity of the electrode surface does not significantly impact the ordering of HPE polymer or NOHM-I-HPE near the surface. This study also indicates that the NOHM-I-HPE particles form a clear layer near the electrode surface immediately above an adsorbed layer of free polymer on the electrode surface. The addition of salt does not impact the layering of NOHM-I-HPE, though it does alter the conformation of the polymer grafted to the nanoparticle surface and free polymer sequestered near the surface. Finally, the application of negative potential results in an increased amount of free polymer near the electrode surface. Correlating the depth profile of free polymer and NOHM-I-HPE particles with the electrochemical performance indicates that this assembly of free polymer near the electrode surface in NOHM-I-HPE solutions contributes to the higher current density of the system. Therefore, this holistic study offers insight into the importance of the assembly of NOHM-I-HPE electrolyte and free polymer near the electrode surface in an electrochemical milieu on its performance.

Graphical abstract: Elucidating the assembly of nanoparticle organic hybrid materials (NOHMs) near an electrode interface with varying potential using neutron reflectivity

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2023
Accepted
01 Apr 2024
First published
02 Apr 2024

Nanoscale, 2024,16, 8521-8532

Elucidating the assembly of nanoparticle organic hybrid materials (NOHMs) near an electrode interface with varying potential using neutron reflectivity

M. A. Haque, S. T. Hamilton, T. G. Feric, A. A. Park and M. D. Dadmun, Nanoscale, 2024, 16, 8521 DOI: 10.1039/D3NR06621E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements