Surface defect mitigation via alkyl-ligand-controlled purification for stable and high-luminescence perovskite quantum dots†
Abstract
Perovskite quantum dots (PQDs) have received considerable attention as fluorescent materials due to their excellent optical properties. However, because PQDs contain ionic bonds, they have the disadvantage of being vulnerable to environmental conditions, so improving their stability is essential. Indeed, recent research has focused on improving both the stability and luminescence of PQDs by mixing them with methyl acetate (MeOAc) to suppress surface defects via purification. MeOAc reacts with the surface ligands of PQDs, resulting in ligand-controlled purification. However, while the ligands are limited for the PQD synthesis, the effect of ligand alkyl-chain length has not been reported. Therefore, we report herein a strategy for obtaining stable PQDs with tunable performances by using amine ligands of various chain lengths. The amine ligand is selected because it is very effective in interacting with the halide vacancies present on the surface of the perovskite crystal structure. The results indicate that MeOAc becomes less effective as the chain length of the ligand is increased, and more effective as the chain length is decreased. Consequently, PQDs treated with MeOAc and a short-chain ligand afford a quantum yield (QY) of 79.2% and are highly stable when exposed to thermal and ambient conditions. Therefore, we suggest a facile approach to suppressing the degradation of PQDs during the fabrication process.