Issue 27, 2024

Investigation and development of photocathodes using polyaniline Encapsulated Ti3C2Tx MXene nanosheets for dye-sensitized solar cells

Abstract

In the current study, polyaniline (PANI) modified two-dimensional Ti3C2Tx MXene composites (PANI-Ti3C2Tx) are exploited as photocathodes in dye-sensitized solar cells (DSSCs). The study revealed that incorporating PANI into Ti3C2Tx improved the material's electrochemical properties, owing to the presence of amino groups in PANI that enhanced the material's electrical conductivity and thereby facilitated more rapid ion transport. In addition, PANI enhanced the surface wettability of Ti3C2Tx, resulting in an increase in the number of electroactive sites. The presence of PANI molecules in the interlayer and on the surface of Ti3C2Tx was confirmed through X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). Subsequently, electrochemical analysis of the PANI-Ti3C2Tx photocathode or counter electrode (CE) revealed a commendable electrocatalytic activity with the iodide/triiodide electrolyte, a favourable charge transfer kinetics, and a charge transfer resistance as low as platinum. Additionally, at AM 1.5G, the performance of the DSSC constructed using the thermally decomposed Pt-CE was 8.3% when subjected to simulated 1 sun light, whereas the efficiency of the DSSC constructed using the as-prepared composite material was 6.9% under corresponding conditions. PANI-Ti3C2Tx as the photocathode (CE) in a DSSC showed a higher power conversion efficiency (PCE) improvement than PANI CE and Ti3C2Tx CE DSSCs, emphasizing its potent catalytic activity and quick mass transport of electron capability. By capitalizing on the conductivity and electrocatalytic property of the two components, the as-fabricated PANI-Ti3C2Tx photocathode significantly increased the overall PCE of DSSCs. Furthermore, the DSSC utilizing the PANI-Ti3C2Tx CE demonstrated exceptional reproducibility and stability. This underscores its consistently high performance and significant resistance to corrosion in the iodide/triiodide redox electrolyte environment. Overall, these findings show that the PANI-Ti3C2Tx composite has the potential to be a competitive alternative to platinum-based CE materials for the development of DSSCs with exceptional performance.

Graphical abstract: Investigation and development of photocathodes using polyaniline Encapsulated Ti3C2Tx MXene nanosheets for dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2024
Accepted
31 May 2024
First published
24 Jun 2024

Nanoscale, 2024,16, 13121-13130

Investigation and development of photocathodes using polyaniline Encapsulated Ti3C2Tx MXene nanosheets for dye-sensitized solar cells

S. P. Nagalingam, S. Pandiaraj, Abdullah. N. Alodhayb and A. N. Grace, Nanoscale, 2024, 16, 13121 DOI: 10.1039/D4NR01057D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements