High-performance flexible photodetectors based on CdTe/MoS2 heterojunction†
Abstract
Flexible photodetectors have attracted escalating attention due to their pivotal role in next-generation wearable optoelectronic devices. This work presents high-performance photodetector devices based on CdTe/MoS2 heterojunctions, showcasing outstanding photodetecting and distinctive mechanical properties. The MoS2 film was exfoliated from bulk layered MoS2 and covered by a sputtered ultrathin CdTe film (∼8.4 nm) to form a heterojunction. Benefitting from the photovoltaic effect induced by the built-in electrical field near the high-quality interface, the fabricated CdTe/MoS2 heterojunction photodetector can operate as a self-powered photodetector without any external bias voltage, especially showing a high photodetectivity of 5.84 × 1011 Jones, remarkable photoresponsivity of 270.3 mA W−1, fast photoresponse with a rise/fall time of ∼44.8/134.2 μs and excellent bending durability. These results demonstrate that the CdTe/MoS2 heterojunctions could have significant potential for future applications in optoelectronic devices.