Issue 33, 2024

Tailoring electrochemically exfoliated graphene electroactive pathways in cementitious composites for structural health monitoring of constructions

Abstract

Manipulating and exerting a nanoscale control over the structure of multicomponent materials represents a powerful strategy for tailoring multifunctional composites for structural health monitoring applications. The use of self-sensing, electroactive cementitious composites in large-scale applications is severely hindered by the absence of clear directives and a thorough understanding of the electrical conduction mechanisms taking place within the cement matrix. Here we report on a nanoscale approach towards this goal which is accomplished via the development of a novel, multifunctional cementitious composite incorporating electrochemically exfoliated graphene (EEG). The use of commercially available poly(carboxylate ether)-based superplasticizer allowed us to embed in the cement mortar up to 0.8 wt% of EEG which is fully dispersed in the matrix. The multiscale investigation made it possible to assess the effect of such high dosages of EEG on the mechanical performance and hydration degree of cementitious composites. We used electrochemical impedance spectroscopy to monitor the formation of electroactive EEG-based percolation paths for charge transfer within cement mortar, the latter displaying resistivities of 2.67 kΩ cm as well as EEG-cement-EEG capacitive paths with capacitance of 2.20 × 10−10 F cm−1 for composites incorporating 0.6 wt% of EEG. Noteworthy, we have proposed here for the first time an electrical equivalent circuit for the impedance spectroscopy analysis of cementitious composites with high loadings of graphene, exceeding the percolation threshold. These findings underscore the potential of nanoscale structures for civil engineering applications and more specifically may open new avenues for the technological application of graphene-based cementitious composites in self-sensing structures.

Graphical abstract: Tailoring electrochemically exfoliated graphene electroactive pathways in cementitious composites for structural health monitoring of constructions

Article information

Article type
Paper
Submitted
23 Apr 2024
Accepted
05 Aug 2024
First published
06 Aug 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2024,16, 15824-15833

Tailoring electrochemically exfoliated graphene electroactive pathways in cementitious composites for structural health monitoring of constructions

M. Safuta, C. Valentini, A. Ciesielski and P. Samorì, Nanoscale, 2024, 16, 15824 DOI: 10.1039/D4NR01764A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements