Issue 37, 2024

Tunable magnetism in nitride MXenes: consequences of atomic layer stacking

Abstract

We have performed density functional theory (DFT) based calculations to investigate the effects of stacking patterns on the electronic and magnetic properties of several nitride MXenes. MXenes, a relatively new addition to the family of two-dimensional materials, have exhibited fascinating properties in several occasions, primarily due to their compositional flexibility. However, compared to carbide MXenes, nitride MXenes are much less explored. Moreover, the structural aspects of MXenes and the tunability they may offer have not been explored until recently. In this work, we have combined these two less-explored aspects to examine the structure–property relationships in the field of magnetism. We find that in the family of M2NT2 (M = Sc, Ti, V, Cr, Mn; T = O, F) MXenes, the stacking of transition metal planes has a substantial effect on the ground state and finite temperature magnetic properties. We also find that the electronic ground states can be tuned by changing the stacking pattern in these compounds, making the materials appropriate for applications as magnetic devices. Through a detailed analysis, we have connected the unconventional stacking pattern-driven tunability of these compounds with regard to electronic and magnetic properties to the local symmetry, inhomogeneity (or lack of it) of structural parameters, and electronic structures.

Graphical abstract: Tunable magnetism in nitride MXenes: consequences of atomic layer stacking

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2024
Accepted
21 Aug 2024
First published
22 Aug 2024

Nanoscale, 2024,16, 17474-17487

Tunable magnetism in nitride MXenes: consequences of atomic layer stacking

H. S. Sarmah and S. Ghosh, Nanoscale, 2024, 16, 17474 DOI: 10.1039/D4NR02246G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements