Issue 42, 2024

Heterogeneous binding of polymers on curved nanoparticles

Abstract

Unraveling protracted polymer binding on curved surfaces of nanoparticles (NPs) is important for the fabrication of multifunctional nanostructures in cutting-edge research disciplines such as directional self-assembly and nanomedicine. By using our newly developed Integral of First-passage Times (IFS), we demonstrate a curvature-dependent heterogeneous binding of polymers on curved NPs, not only in terms of the binding dynamics but also in terms of the final adsorption densities. The highly curved surfaces on NPs can adsorb larger density polymers with binding kinetics that are faster than those on less curved areas, which is consistent with recent experimental observations. In particular, the spherical corners on cubic NPs with a radius of R = 3.0 nm can adsorb polymers at a density 4.1 times higher than those on planar surfaces and 1.7 times higher than those on rod edge surfaces. A unified relationship between adsorption densities and surface curvatures is proposed to collapse all the data onto one master curve. The findings demonstrate a heterogeneous binding of polymers on curved NPs, providing effective guidelines for the rational design of functional nanostructures in different applications.

Graphical abstract: Heterogeneous binding of polymers on curved nanoparticles

Article information

Article type
Paper
Submitted
17 Jun 2024
Accepted
22 Sep 2024
First published
25 Sep 2024

Nanoscale, 2024,16, 19806-19813

Heterogeneous binding of polymers on curved nanoparticles

Y. Huang, C. Tang and Q. Tang, Nanoscale, 2024, 16, 19806 DOI: 10.1039/D4NR02486A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements