Hydrogen bonding-regulated miscibility of graphene oxide and nonionic water-soluble polymers†
Abstract
The integration of graphene and nonionic water-soluble polymers has generated useful composites with high performances and rich functionalities. These attractive graphene composites are usually synthesized from the aqueous mixture of graphene oxide (GO) precursor and polymers such as synthetic polyvinyl alcohol and natural cellulose. In this widely known preparation method, the miscibility of GO and nonionic water-soluble polymers seems to be intuitive but has been disputed by some observations of gelation and aggregation. Herein, we have re-examined the miscibility of GO and nonionic water-soluble polymers and confirm their general coaggregation caused by hydrogen bonding interaction. Due to the increasing GO concentration, the property of stable miscibility is converted to aggregation by surface adsorption with transient hydrogen bond crosslinking. We have proposed a preheat mixing strategy to prepare a homogenous solution of GO and nonionic water-soluble polymers in any arbitrary ratio. The re-exploited miscibility allows the fabrication of homogeneous composite papers with renewed high performance trend. The hydrogen bonding-regulated miscibility refreshes the understanding on graphene/water-soluble polymeric composites and provides an ecofriendly interaction control method to modulate the assembly of structures and materials.