MXene-based aptasensors: a perspective on recent advances
Abstract
Recent advancements in science and technology have significantly enhanced public health by integrating novel materials and early diagnostic methods. A key focus is on MXenes, a class of materials known for their distinctive morphology and exceptional stability in diverse environments. MXenes possess notable structural engineering capabilities, enabling their design and synthesis into various forms tailored for specific applications. Their surface can be functionalized with different groups to enable chemical binding and physical attachment to various molecules, while variations in layer thickness and elemental composition influence their electrical conductivity and stability. This perspective article examines recent structural innovations in MXenes, particularly their application in biosensors. We highlight the role of aptamer surface decorations, which offer specific and selective binding for detecting a broad spectrum of analytes, thus underscoring MXenes’ potential in advancing diagnostic technologies and improving public health.
- This article is part of the themed collections: MXene chemistries in biology, medicine and sensing and Recent Review Articles