Near-infrared BODIPY photosensitizers for two-photon excited singlet oxygen generation and tumor cell photodynamic therapy†
Abstract
In this paper, two near-infrared BODIPY photosensitizers, Id-BDPI and Cz-BDPI, were obtained by modifying the indole and carbazole aromatic heterocycles in the core of BODIPY. The maximum absorption wavelengths of Id-BDPI and Cz-BDPI were 694 nm and 722 nm, and their singlet oxygen yields were 48% and 48.4%, respectively. In the simulated tumor cell photodynamic therapy, Id-BDPI and Cz-BDPI could effectively inhibit the growth of A549 tumor cells under near-infrared light. Meanwhile, the lysosomal co-localization coefficients of Id-BDPI and Cz-BDPI with A549 tumor cells were 0.94 and 0.89, respectively, showing high lysosomal targeting ability and biocompatibility. The two-photon absorption cross sections measured at 1050 nm by the Z-scanning method were 661.8 GM and 715.6 GM, respectively, and Cz-BDPI was further successfully applied to two-photon fluorescence imaging and two-photon excited singlet oxygen generation in zebrafish. The above results indicate that the introduction of aromatic heterocycles can effectively enhance the photodynamic efficacy of BODIPY photosensitizers, and the larger two-photon absorption cross section also brings potential for two-photon photodynamic therapy applications.