Issue 12, 2024

Preparation of fluorinated polyesters by reversible addition–fragmentation chain transfer step-growth polymerization

Abstract

Fluorinated polyesters have demonstrated significant research value and application prospects, while their traditional synthetic strategies were restrained by harsh reaction conditions, low monomer activity, and limited polymer topology. Herein, we exploited reversible addition–fragmentation chain transfer (RAFT) step-growth polymerization to prepare fluorinated polyesters with tailor-made chemical compositions and correlated their thermal and surface properties with chemical structures. A model polymerization was first performed using the fluorinated bifunctional chain transfer agent (CTA) BDMAT8F and N,N′-(1,4-phenylene)dimaleimide as the monomers, and the polymerization kinetics was monitored through nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC), which suggested a step-growth polymerization mechanism. With this method, fluorinated polyesters with different chemical structures were synthesized by varying the molecular structures of the bifunctional CTA and the bismaleimide monomer. The chemical structure and molecular weight of the synthesized fluorinated polyesters were characterized by 1H NMR, 19F NMR, and SEC, the thermal properties were characterized by thermogravimetric analyses and differential scanning calorimetry, and the surface properties were characterized by water contact angle (WCA) measurements. The glass transition temperature (Tg) of these fluorinated polyesters was correlated with their chemical structures, where a rigid backbone favored a high Tg, while a flexible pendant group decreased the Tg. However, neither the backbone rigidity nor the fluorine content had an obvious effect on the WCA of the fluorinated polyesters. Instead, the pendant group showed a significant influence on their WCA. The unique advantage of RAFT step-growth polymerization for preparing fluorinated polyesters was demonstrated by the preparation of a novel fluorinated polyester brush by grafting copolymerization of acryloylmorpholine through RAFT radical polymerization from an as-synthesized fluorinated polyester. Both the thermal and surface properties of this fluorinated polyester brush were strongly correlated with the properties of the poly(acryloylmorpholine) sidechains. This method has provided a new platform for the preparation of fluorinated polyesters and will provide new insight for tailoring the properties of polyesters.

Graphical abstract: Preparation of fluorinated polyesters by reversible addition–fragmentation chain transfer step-growth polymerization

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2024
Accepted
18 Feb 2024
First published
20 Feb 2024

Polym. Chem., 2024,15, 1234-1243

Preparation of fluorinated polyesters by reversible addition–fragmentation chain transfer step-growth polymerization

G. Mei, S. Lei, Q. Li, J. Xu and M. Huo, Polym. Chem., 2024, 15, 1234 DOI: 10.1039/D4PY00156G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements