Issue 24, 2024

Elementary processes in ternary solar cells

Abstract

The insertion of a third component in bulk heterojunction solar cells has led to enhanced power conversion efficiencies (PCEs). However, the rationale beyond the superior performance of ternary solar cells (TSCs) is still a matter of debate and device design is usually based on qualitative considerations. Herein, we present an exhaustive analysis of the kinetics of interfacial charge and energy transfer elementary processes occurring in an archetypal ternary blend, composed of two donors (FG3 and FG4) and one acceptor (Y6). Using molecular dynamics (MD) simulations to generate realistic blend morphologies, coupled with a full quantum mechanical approach to compute reaction rates, we provide insights into the factors contributing to the final PCE of TSCs. Our results indicate that, for the system under study, the presence of two donors allows for more effective solar spectrum coverage, while Förster resonance energy transfer plays a key role in funneling the energy absorbed by FG3 towards a more kinetically efficient FG4:Y6 donor–acceptor pair. Indeed, the FG3:Y6 combination is hampered by slower charge transfer rates, primarily due to energy loss pathways. These findings indicate that even small differences between donor molecules (such as FG3 and FG4) can lead to dramatically different charge transfer kinetics, suggesting that the improved PCE observed in TSCs cannot be easily anticipated through qualitative assessments alone. Instead, device performance is highly sensitive to the intricate interplay of charge and energy transfer processes, highlighting the need for theoretical modeling to accurately predict outcomes. In this respect, we show that our protocol can provide useful elements for a deeper understanding of the physical effects concurring to determine the final PCE of a device, thus enabling a rational design of novel blends for organic solar cells.

Graphical abstract: Elementary processes in ternary solar cells

Supplementary files

Article information

Article type
Research Article
Submitted
19 Aug 2024
Accepted
30 Sep 2024
First published
03 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Chem. Front., 2024,8, 4069-4076

Elementary processes in ternary solar cells

T. Pizza, A. Landi, F. Ambrosio, A. Capobianco and A. Peluso, Mater. Chem. Front., 2024, 8, 4069 DOI: 10.1039/D4QM00714J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements